
ISRAEL JOURNAL OF MATHEMATICS, Vol. 38, No. 4, 1981 

FACTOR ORBIT EQUIVALENCE 
OF COMPACT GROUP EXTENSIONS 

BY 

ADAM FIELDSTEEL 

ABSTRACT 

Let G be a compact metrizable group. We show that any two ergodic extensions 
of transformations Tz and 7'2 by rotations of G are factor orbit equivalent 
relative to T, and 7"2, and the equivalence may be taken to have a certain 
natural form. 

1. Introduction 

Throughout  this paper, all transformations are assumed to be (or must be 

shown to be) measure-preserving automorphisms of Lebesgue probability 

spaces. Transformations T~ on spaces (X, ~,, #~), i = 1, 2, with factors ~,  are 

said to be factor orbit equivalent (relative to ~r and ~_,) if there exists an orbit 

equivalence ~:X,---~X2 between T, and T_, such that q~(.~,)= .d_,. In [3], M. 

Gerber  gave a classification up to factor orbit equivalence of the finite extensions 

of an ergodic transformation. In particular, she obtained the somewhat surpris- 

ing result that this classification is non-trivial; two ergodic extensions by discrete 

spaces of the same cardinality need not be factor orbit equivalent. Furthermore,  

she showed that ergodic extensions of a transformation by non-atomic spaces 

also need not be factor orbit equivalent, fn this paper we obtain the positive 

result that the ergodic extensions of a transformation by rotations of a compact 

metrizable group form a single factor orbit equivalence class. We remark that 

the special case of this result, in which the group in question is finiIe, follows 

from the classification of [3], and that the positive portion of that classification 

(that finite extensions with the G-interchange property are factor orbit equival- 

ent) can be seen to follow from our result. 

To  formulate our result more precisely, let (G, ~,  A, p) denote a compact 

metric group (which will be fixed for the remainder of the paper) with Borel sets 

~ ,  Haar measure )t, and invariant metric/9 _<-1. 
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Given a transformation T on (X, M,/.t ) and a measurable function or : X ~ G, 

we form a transformation S on ( X x G ,  M x ~ ,  ~ xA)  by setting S(x,g)= 
(Tx, or(x)g). Suppressing G, we denote this system by (S, T, tr, X)  and call it a 

G-extension of 7'. The main result we will prove (Theorem 2) is the following: 

If (S, 7", or, X)  and (S-, "F, 6", X)  are ergodic G-extensions of T and "F, respect- 

ively, then they are factor orbit equivalent (relative to the factors M x {G} and 

.~ x {G}) via an orbit equivalence qb:X x G---~.~x G of the form ~ ( x , g ) =  

(dp(x), a(x)g) where a is a G-valued measurable function on X. 

The method we use to prove this theorem originates with an idea of D. 

Rudolph. He observed several years ago that a proof of Dye's theorem on the 

orbit equivalence of ergodic measure-preserving transformations [1] could be 

given using an argument analogous to that of D. Ornstein in the proof of the 

isomorphism theorem for B-shifts [4]. At the heart of the argument is a metric 

on sequences of symbols that plays the role of the d metric in [4]. (Already the f 

metric, introduced by J. Feldman [2], had been used in an analogous way by B. 

Weiss [6] in the proof of the equivalence theorem for finitely fixed transforma- 

tions.) 

2. Preliminaries 

In adapting Rudolph's idea to the present situation, we avail ourselves of 
much of the technique developed in [5]. In particular, we make use of the metric 

on distributions introduced in that paper, and we begin here by summarizing the 

relevant facts about this metric. In order to include distributions of countably 

infinite partitions as a special case, we extend the definition to or-compact metric 

spaces. Throughout the following discussion, (M,p)  will denote a or-compact 
metric space with bounded metric, p. 

DEFINITION 1. Let {(X, ~,/z,)}, i = 1,2 be probability spaces and 

/, : X~ -* (M, p) Borel measurable functions. A joining of (X,,f,) and (X2,f2) is a 

probability space (Z, C, or) with measure-preserving maps l-Ii :Z--*  X, We set 

11 distx, f'' dist f 2 x :  I = ,,,,, j,,,,,n~}inf fz p(f, II,(Z),f2II2(Z))dor(Z). 

It is easy to see that if X: is non-atomic and e >0 ,  then there exists a 

measure-preserving map 0 :X~-* X2 such that 

fx, p(f,(x),f2(Ox))dl~,(x,< Idist f,, dist f2]l+ e. 
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By an ((M, p)-valued) process we mean a pair (T, f)  consisting of a transforma- 

tion T on X and a measurable function f : X--* M. Given a process (T,f)  on X 

and x E X ,  n ~ N ,  we let (l/n)ET-ddishT,~rf denote the distribution of f 

restricted to {T~x},=,l where each {T~x} is given point mass 1/n. A process (T,f)  is 

ergodic if T restricted to the factor (f)r  generated by the translates of f is 

ergodic. We will make use of the ergodic theorem and the strong Rokhlin 

lemma, formulated in this context as follows. 

LEMMA I. I f  (T, . f , )  and (T2.f2) are ergodic processes on (X.~, .IX,)  and 
e > 0 ,  then (::IN,,E.N) ( V N -  N,,) (3A~ C X )  with /.L(Ai)> 1 - e  and 

1 N-I J ~,dist/~ d!st~ <e  and (Vx,~A,) i = l  2, (VxEA,) ~ ( ~ , x , ,  , , 

j N I _...~ i N - I  there is a bijection O : {T,x,}j=. {T2x_,}/=. such that 

II !s II 1 2 p(f,(T~x,),f~_(O(T~x,)))< d t f,, d!st f ,  + e. 
N i=. -. - 

LE~,iA 2. Given an ergodic transformation T on (X, ~ ,  ix), a function 
{T F}j=. are f : X - - > ( M , p ) a n d e > O , N ~ N ,  t h e r e e x i s t s a s e t F E ~ s u c h t h a t  j N-, 

N - !  

disjoint, t~ ( Uj=,, T'F) > 1 - E, and II dist,.f, dist• < E. (Here the measure on F is 

IX fix (F).) 

Given functions f, : (X, ~,, ix, )--~ (M, p), i = 1 ,2 , . . . ,  n, we let (1/n)ET=,l distx, f, 

denote the distribution of the disjoint union of the f, on ( U~'=, X,  (1/n) E~=-,I ix, ). 

Given functions, f, : X ~ (M, p,), i = l, 2,- .  -, n, we let V ~;,I fi : X - *  IY_5, *, M, 

denote the cartesian product of the [,, where II~'=d M~ is endowed with the sup 

metric. 

3. The F metric 

The metric on sequences referred to above is given by the following. 

DEFINITIOn 2. Given (M, p), n E N and a, b ~ M". Set 

1 " 
~(a, b) = ,~s.inf {d(~ra, b) + II ~'11} where d(~ra, b)=n~=p((~ra),,(b),)= 

and II ll--J{i E { l , 2 , . . . , n  - 1} :~ ( i )+  1 ~ 0r(i + 1)}1 which we might call the 

number of cuts in o'. One readily verifies that ~ is a metric on M". 

Given an (M, p)-valued process (T,f)  on X and n E N, the n-name of x E X is 

the sequence ~(T'x)}7~l E M". The following lemma establishes a property of 
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ergodic processes which is an analogue of the finitely determined property of the 

isomorphism theory, and the finitely fixed property of the equivalence theory. 

Loosely stated, it says that if the finite distributions of two ergodic processes are 

sufficiently close, then for large n, their n-names are close in the ? metric. 

LEMMA 3. (Vg > 0)(::!~ > 0, n ~ N) such that if (T,, fO and ( ~ ,  f2) are 
ergodic (M, p) valued processes on (X~, ~t~, # ~) and (X2, ~12, tz 2) respectively, such 
that 

(I) dist V T;~f,, dist V T~J[2 < & 
Xl  i~(l X2 '~ =0 

Then Oln >0) ( : INoEN)  such that O(N>=No) and for i = 1,2, (::IA, CX~), 

I~i(A, ) > 1 - ~1, such that  0r E At ,  x~ E Az), 

(2) ~ v T ;  , (x,), V T ;  (x,_ <~.  
j=O j=O 

PROOF. Fix e > 0  and let 8 = e/100 and n > 100/e. Let (T,,f .)  and (T2,f2) be 

ergodic processes satisfying (1). Fix "O >0 ,  which we may take to be less than 

e/100. 

By Lemma l, ( 3L  E N), L > n/7 l, such that for i = 1, 2, and sets B, C X with 

p,i(B~)> 1 -  rl, we have, for all x~ E B~ and x2E B2, 

(3) ~ dist T-l if, dist < & 
= } { T ~ X l }  \ j = 0  = ) {T2kx2} j 

and this distribution match is effected by a bijection 

f , 'r,k IL-I. . . . .~ f,lr~k / L - I  
0 : l l l X l ] k = o  l t 2 X 2 ~ k = o .  

We will refer to the L-names of points in B, as good L-names. Now let 

R = {R,,, R , . . . ,  R,} be a partition of M L (endowed with the sup metric) such 

that each R,, i =  1 , . . . ,  s, has diameter less than r/, and ~,(fj-J(R,,))<'0. If 

b E M L, we denote the element of R containing b by R(b) .  

Again by Lemma 1, (::]N,, ~ N) such that (VN > N,,) and i = 1, 2, (::IA, C X~) 

with ~ (A,) > 1 - r/ and (Vx E A,) the N-name a of x contains a disjoint union 

{b~}~, of good L-names which covers all but a fraction 2r/ of a, and which has 

the property that each R (bt)~ { R , . . - ,  R,} appears at least K times in {R (b~)}, 

where K > lOOn/e. 

Now fix x~ E A ,  i = 1,2, and let aj and a2 denote their respective N-names. 

We show that condition (2) holds. Let {b;}~ be a set of good L-names in a, as 

described above and let {b 'IK'>~ t~j=~ denote those bt at which R(bl) is a given value. 
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Subdivide each bl, into consecutive disjoint n-names by making s < n the initial 

position of the subdivision of blj whenever j = s mod n. Repeating this subdivis- 

ion for each such family {bl)~, we cover a fraction 1 - 3rl of at with a collection 

{c;} of disjoint n-names, and by virtue of the distribution condition (3), there is a 

bijection 0 :{cl}, ~{c~}~ ettecting a distribution match to within 6 + 2,1. By 

permuting a~ to bring each (c]) into the same position as O(cl), we will have 

obtained the desffed V match. �9 

4. The factor orbit equivalence theorem 

Lemma 5 below is the central copying argument that makes the whole proof 

go. It says, roughly, that if two ergodic G-extensions are sufficiently close in 

distribution, then a slight modification (in the sense of factor orbit equivalence) 

will suffice to vastly improve the distribution match. The proof is really a simple 

application of the property enunciated in Lemma 3. In brief, if the G-extensions 

are close in distribution, then their names are close in V. If their names are close 

in V, then a slight rearrangement of the orbits followed by a slight relabeling will 

suffice to vastly improve the distribution match. Regrettably, considerable 

technical detail is involved in carrying out this argument. In doing so, we will 

make use of the following notation. If (S, T, o-, X)  is a G-extension, then for 

n C Z a n d x E X ,  w e s e t  

{ o'(T"-~x)o'(T"-2x) .. .o'(x), n > 0 ,  

o'~")(x) = ida, n =0 ,  

o'(T"x)- lo ' (T"+'x)-""o'(T-~x)  -', n < 0 .  

If T, is another transformation on X such that for some function k : X ~ Z, and 

for a.e. x ~ X, T,(x) = Tk~X~(x), we indicate this by T, = T ~k~. Similarly, we let 

<r ~ denote the function x ~ o'~E~x~(X). We let OT(x) denote the T-orbit  of x, and 

for e > 0, we write T, - ,  T if O r ( x )  = OT,(x) a.e. and/x{x ~ X : T,(x) ~ T(x)} < 

e. Finally, we denote the second coordinate map on X • G by c, c (x, g) = g. All 

partitions are assumed to be finite or countably infinite and measurable. It will 

help if we isolate the following preliminary result. 

4. Let (S, T, or, X )  be a G-extension, P a partition on X and let 
(Xo, go) ~ X x O satis[y 

7- ~ dist V__ ~ S -j (P v c) , dist S -j (P v c) < 1'/ 
I K i =o  {s'(xo. ga)} i x x O  ~, i~O 

for some k and n E N. Then 
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PROOF. 

that 

dist S J ( P v c )  dist S i ( P v c )  <7/. 
S'({xt~}x G)  X x G  \ j = t ~  i =o i =o 

(The measure on each S'({x,,} • G) is ~ ,~x  A.) 

Let O : X  x G---~{S'(x,,.g,,)}~:.l be a measure-preserving map such 

L (v' ,) m S ' (Pvc ) ( x ,g ) ,  V S- ' : .pvc)(O(x,g)  dv<17 
x O  \ j = o  j = o  

where m is the appropriate metric. Let Z = (X • G) x G, with product measure 
v x A and let 7rz : Z -* X • G via zn(x, g ,  g2) = (x, g~g2) and 

z,,_:Z~{S'({xo}• G)}~_--d via ~r2((x, gO, g.)= T~2(O(x, gO) where T~2(x,g)= 
(x, gg2). Then 

m ~SJ(Pvc)(rr~(x.g.g2)). V S-J(Pvc)(Tr~(x.g.gz)) dvxA (x ,g .g2 )  
L i = "  j =o  

= m 'S-S(Pvc)(x.g,g2). V S-J(Pvc)(T.~(O(x,g,))) d v x A ( x ,  gj,g2) 
L i =o r =o 

L Iv ,,o,--'v 'l ' S -j (P v S -~ (P v c)  (0 (x, g,) dv  x A (x, g,, g2) < n. = m c , , x , ~ , , , ,  
L j = O  j=O 

LEMMA 5. ( r e  > 0 ) ( 3 8  >0 ,  n ~ N )  such that if (S, T,o' ,X) and (5, "F, 6",X) 
are ergodic G-extensions with partitions P of X and P of X such that 

(4) dist V S-~( P v c),dist V g-~(/5 v c) < 
X x G  i = 0  X x G  i = 0  

then (3N  E N) such that (VS, >0,  n, E N) there exists a measurable a : f f  --~ G 
and PI on 2 and 7"i = ~k(x) such that 

(5) f 8  p(ot (.~), ida)d/2 < e, 

(6) j/~,_/31 < e, 

(7) L -  r 

(8) 

(9) 

[or a.e.~ ~ fr ~ = T"2' and2 = 7"7"2' imply Jm - m , J < 2 N ,  

dist ~,-t S_, ~,-' J[ x• (Pvc ) ,~ t i=oV S- ' (P,  votc) < 8 ,  whereS ,=S  (k). 
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PROOF. Fix E > 0. Choose (6, n) by Lemma 3 for an ~ match to e/100. Let 

(S, T, o-, X )  and (S, T, 6-, .~') be ergodic G-extensions satisfying (4) for this choice 

of (& n). Again by Lemma 3, choose N E N so that for sets A C X x G and 
5, C . ~ •  of measure greater than 1 - e l 1 0 0 ,  and for all ( x , g ) ~ A  and 

(.~, ~,)~ * we have ~( V~:, S i (p  v c)(x,g),  V~=~ g-'(P v c)(~, g))< el100. We 
must show that these choices of (6, n) and N have the desired properties. Fix 

6~ > 0 and n, ~ N (we may assume n~ > N)  and choose 7 /~  (0, 1), whose size will 

be determined by subsequent considerations. Let K > n,/~l be an integer 

multiple of N such that for set /3 C -,Y x G of measure greater than 1 - "q, and for 

all (~, g) ~ B, [{j (~ {0 , . . . ,  K - 1} : SJ (i, g) ~ A }[ > (1 - 7/)K and such that there 

exists a point (x~, g~) ~ X • G with 

,), (v ,)ll ~_~ dist S- '  (P v c dist S- '  (P v c 
' =  S / ( I I , ~ ] )  X I =1) X X ( ~  ~ i = O  

and 
]{j E { 0 , . . . , K -  1}: S ' ( x , , g , ) E  A }  I > ( 1 -  ~)K. 

Let O D P be a generator for ~P. Let M > K/~  be an integer multiple of K such 

that for a collection ~ C V ~,, ~{-~(~ with ~ ( U g ' )  > 1 - "q, and 

(VE E ~)(3c,j~ ~ G), l = 1 , . . . , M ,  j = 1 , . . . , K  such that 

1 M-'I~ ~-~ ,E_,, ,E ,=X 

Now construct a Rokhlin tower in (X,T)  of height M, with base F and 
-- M - I  
/~ ( U~=o ~PJF) > I - n such that 

I1 " (~ .(o )r d t V T-'  v V #~ ,d  t V v V a'~ < ~ ,  
j = 0  i = 0  j = 0  i = 0  

where ~, is chosen so small that f i ( F n  U ~ ) > ( 1 - - q ) ~ ( F )  and (VE E ~)  

M - - ]  K - I  

M ~(~nF) i=0 

Let C = { i ~ X : X ( { g E G : ( s  Then ~ ( ~ ) > l - X / ' ~  so 
M - I  M - t  - - j  

t ~ ( c ' n U j : , ,  T i F ) > ( 1 - X / - ~ ) t ~ ( U j = o  T F ) ,  so for a collection W'CW with 

# ( ( U g " ) A F ) >  ( 1 -  ~ ) t ~ ( ( U g ' ) N  F)  and ( V E ' E  * ' )  we have 

M - I  M - - I  

j =o j =o 

Fix such an E'.  Then for a set of integers L E {0 , . . . ,  K - I}  of density g r e a t e r  

than ] - ~ - ~ ,  
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M / K - I  

/2 (d' n U 
i =11 

M I K - I  

Furthermore, for a set of integers L ~ {0, .- . ,  K -  1} of density greater than 
1 -  V'-~, we have 

K M~t-I I ~ l  
.~:, J*~+,~(~'nv),=,1P(6'(2)'c~+m'"~)d~(x)<X/-(q~lg(E'OF)" 

Thus, if 7/ is sufficiently small, 3 L  E { 0 , - - . , K - 1 } "  for which both these 

conditions hold. For such an L, there is a set of integers J C {0,. �9 M / K  - 1} of 
density greater than 1 - 4~'~'-~ _ ~ such that (Vj E J)  

K--I 
/2 (C n TL+m(E' n F)) > (1 - av6'4--r/)/2 (E'  n F)  and ~] p((r~ (.~), cL+m.,.~.) < ~ '~  

i =1) 

for ~ in a set Q C "rL+m(E' n F)  of measure greater than (1 - "X~/-~)/~ (E'  O F). 

Hence (if r/ is sufficiently small), we may choose xt E C O ~ and ~ E G so that 

(Xh~t)~ /~. NOW choose I E { 0 , . . . , N - 1 }  so that except for a set of m E 

{0,- . . ,  K / N }  of density less than 2r/, the (P v c) (respectively/5 v c) N-names of 

the points S~*"N(Xt, g,) (respectively, S~*"N(2h ~ ) )  are within e/100 of each 

other in the f-metric. Let * r E S x  permute the column levels {T*(E 'A  

F~/L+(~+L)~-I within each of the segments of length N corresponding to the names ]JI=L+IK 

just described, in such a way as to effect the f matches there. Let T~ = T(~) 

denote the transformation obtained on (this portion of) X by translating these 
column levels in their new order, and (S~, T1, rYe, X )  the corresponding G- 
extension, where ~1 = #(k) (and S, = g(k)). 

Let (~.  g2) denote the point in the S orbit of (2 .  g~) that now occupies the 

initial position in this segment of the orbit of $1, and let D denote the translate 

of E ' O F  that contains (22, g~). It will be convenient to let C~.o denote 
C~.iK.,, '(o.e', for i G {0,-- . ,  K - 1}. 

On 0,~11T~tD we define /5, and a as follows: (V2 ~ D )  and i U {0, 1 , . . . ,  

K - 1}. P,(T]~) = P ( T ' x J  and 

a(7"~)  = o'~ (x,)g,gz'6",, (2) -1. 

We repeat this construction for each j E J and each E ' E  ~g', and set 

a ( ~ ) =  ida and /51(.~)=/5(2) on the remainder of J(. We now can see that 

conditions (5) through (9) have been satisfied. (5): Let D, (xl, gl) and (22, g2) be as 

above. Then 
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K-' L K-' L p(a(7"~(~)),id~)dp($) = ~ p((r~(x,)g,,~,,(~)ge)d~(~) 
i =0  i ~0  

K-' o <= ~, [p ((r~ (x,)g,, 6% (~2)g2) +.p (#,  (~)g2, c,og2) + p (c,og2, 6", (~)g2)] d/.Z (~) 

< (el100 + 31"/)K/2 (O) + 8X~/'-~/2 (O) + 4X5/-~/2 (D). 

Thus, for sufficiently small r/, 

e _ 13 r . 
U T ' , D  

i - o  
6 - -  

The sets of the form I,.JK-' T'~D,~,, cover a set of measure 1 -5~ / r / ,  so for 

sufficiently small 7/, we obtain (5). 
Because of the J-match used to construct/St and T1, the density of the changes 

made in 15 and T along the columns of the tower is less than e/100+ 371, which 

gives (6) and (7). 
Condition (8) is clear. To verify condition (9), again let D, (x,, g~) and (~2, g2) 

be as above. Consideration of the m a p  0 : 13iK--o I RiD ~ 13,r=o' T'({x,} x G) given 

by T'~(~, g2g)~ T ' (x ,  g~g), informs us that 

I1,  ' dist V g~(/5  v ac), dist V r/ 
I ? i l D  j = 0  K - I  j = 0  

O T l ( { X l }  TM G)  
i - o  i - o  I . , - I  . , - i  '1 dist V S - ' ( P v c ) , d i s t  V S - ' ( P v c  <7/, 
K~t  i = O  X x G  j = O  
U Ti({xt}xG) 
t-o 

since ndK < rt and by Lemma 4. But the measure of the union of the sets of the 
form 13,r.o~ T'~D is (for sufficiently small ,/) large enough for these distribution 
conditions to imply (9). �9 

Theorem 1, below, is the analogue in the present context of the "strong Sinai" 
theorem in the theory of Bernoulli shifts (cf. [4]). This analogy will be made 
explicit as a corollary to the theorem. 

We will use the following simple lemma, whose proof is omitted. 

LEMMA 6. (VN E N, ~/> 0) if 0 < e < 71/2N and T~ and T2 are transforma- 
tions on (X, ~, ix ) such that T~ ~.  T2 then 

Iz{x.E X : T'~x = T~x [or i E { -  N, . .  .,N}} > 1 - 7/. 

THEOREM 1. ~ e > 0 ) ( = l S > 0  and n ~ N )  such that if (S,T, tr, X)  and 
(S, 7", 6r, X)  are ergodic G-extensions with partitions P of X and/5 of X satis[ying 
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.-1 .-,g_,(p )[ <8 
(10) dist v x• V S - ' ( P  v c), dist V c 

i = 0  X x G  i = 0  I 

then there exists a transformation 7", a partition fi on ~i, and a measurable function 

: f~ ~ G such that 

f 
(11) l p ( & ( x ) , i d ~ ) d l 2 ( ~ ) <  e, 

. /  

(12) [ 6 _  P I< e, 

(13) J" ~ T, 
E 

(14) i l k  : X ~ Z is such that 7" = 7"(~ and ~ = ~(k) then (Vm E N) 

dist V S-' (P v c), dist ~ g ' (P v c) I _- 0 
X x G  i =O  . ~ x G  i =O  

PROOF. Fix e > 0  and a sequence {ei}7:l, e~ >0 ,  such that E,~, e, < e. Choose 
(& n) as in Lemma 5 for e~, and suppose that (10) holds for this (8, n). Let N~ be 
the corresponding integer given by Lemma 5. Let e ~' ~ (0, e2) satisfy e ~ < 1/4NI 

and choose (81, nl) by Lemma 5 with respect to e~'. Then Lemma 5 gives us 
TI = ~(k,), t51, and al  on .~ satisfying conditions (5) through (9). 

Let t~ = (al" 2r~)#(~'~(al) -1 and let Sl be the G-extension determined by T1 
and #1. Then condition (9) may be rewritten as 

V S-J( P v c), dist V 5;J(P, v c < a,. 
j ~ O  X x G  j ~ O  

Let N2 be the corresponding integer given by Lemma 5. By continuing in the 
above manner,  we obtain a sequence of processes {(~,/5,)}T=1 on 2~, functions 
a, : . g ~  G, positive integers N, and e~E (0, e~) such that 

(15) ~ ,- ~-1, 1/5i-/5i-11< e ', and f ~  p(a,(:~), id~)d~ <e' ,  (where To = T); 

(16) 
i 

if k, : ..~ ~ Z is such that Ti = ~(k,) then [ k, (~)1 --- ~ Nj (a.e. g); 
j - I  

(18) dist V S - ' ( V  v c), dx~t = v g;J(P, v [3,c) < a, 
X x G  j - o  �9 j - o  

(17) e; < 2 -('§ " 
\ j - - I  
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where /3,(:~)=IIi=~at(g), S~ = ~tk,~ and 8, <�89 n, > ni- i  are chosen as in 

Lemma 5 with respect to e',. 

To complete the proof, we set /5=!im,~| c~ = i im,~ /3 ,  and T'(g)= 

lim,_~ T~ (~). (Note that the sequence {IF~ (~)}, is eventually constant for a.e. ~.) 

Conditions (11), (12) and (14) are then immediately verified. It is clear that 

fL{~ : T g #  T~}< e and that O~(g)C O~(~) for a.e. ~. Furthermore, 

~z n u {~[~,T~I~,#[~,T~]~,+,) =0 
i=o i =j 

where [~, "F~]~, denotes the ordered segement of O~,(~) between ~ and T~. 

Hence iF(:~) E O~ (g) for a.e. ~, so that O~-(~) = O~ (:~) and (13) is established. �9 

COROLLARY. Let (S, T, or, X )  and (S, T, 6r, X )  be ergodic G-extensions. Then 
(V e > O) there exists a G-extension ( S, 7", ~, Ff ), and functions k : X ~ Z and 
a : f f  ~ G such that 

= ~,~k~ and 6" = 6 "~k~, 

~ T and 

(S, T, or, X )  is a factor of (S, 1", ~, fr via a homomorphism �9 of  the form 
c~(~, g) = (ck(~), a(s  ). 

PROOF. Fix e > O  and choose (&n)  for e as in Theorem 1. Let P be a 

generator for (T ,X) .  Construct a partition /3 on X" and a,  : X ' ~  G such that 

dist V S- ' (P  v c), (list V g-,(/5 v ~1c) < & 
X.xG i=0 X x G  i~0 

Apply Theorem 1 to (S, T, P, o-, X)  and (S, T, P, 6"1, ,~) where ~ = (a (~))6"(a)-', 
to obtain I"= T~), P, and a~ satisfying conditions (11) through (14). Let 

a = a z a l .  Then the distribution condition (14) implies that the map 

(.~, g ) -  (~b(i), a ( i ) g )  is a homomorphism, where ~b : X---* X is the map that 

carries (T, P)  to (T, P). �9 

We are now in a position to obtain the factor orbit equivalence theorem for 

G-extensions from Theorem 1 by imitating the corresponding portions of the 

proof of the equivalence theorem [6]. We have made an attempt to preserve the 

notation of [6] in order to facilitate comparison with that work. One ditterence 

between the two arguments that should be noted is the attention we must pay (as 

in the proof of Theorem 1) to keeping our modifications within the given orbit 

equivalence class. 

LEMraA 7. Given ergodic G-extensions ( S, T, o', X ~ and ( S, T, ~, X ), partitions 

B of X and Q of X, a homomorphism ~ from g t o  S o f t h e f o r m  ~ ( ~ , g ) =  
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(4,(:~), t i (~)g) and e > O, there exist (~ :,~ ~ G and T, = f'(~), a, : X ~ G and 

T] = T (~) on X, a homomorphism 4,1 from (TI, X)  to (TI, X)  and a generator 
QI D Q for (T,, X)  such that 

(19) T, ~ 7" and f 
R 

(20) T1-~ T and fx 
p(51(~),id~)d/~ < e, 

p(al(X), ido)d/Z < e, 

and ~31 : (X, g ) '- '~ ( ( ~ l ( X ) ,  (0~ ( ( ~ l X ) ) - - l ~ l ( X ) ~ ( x ) g )  i s  a homomorphism from S(~)  to  

S (k) such that 

(21) 14,~1(Q)- 0 - ' ( O ) l . <  e and 

(22) B C (6i-l(01))t,. 
e 

PROOF. Fix e > 0. Let /5 D /~ be a generator for (T, X),  choose No E N so 
that ::l/~ C V~o_No T-'/5 with 

Let e , E ( 0 ,  e), with size to be determined later, and pick (8,,n~) as in 

Theorem 1 for el. Construct a partition /3 on X such that 

v g - ' (P  v 4 , - ' (0 )  v ~c), dist "'-~ V S - ' ( P v O v c  <8,. 
i = 0  X x G  i = 0  

Then there exist TI = T (~), a, :X---* G, and a partition P, on X satisfying 

TI~.,T. f~o(.,(x),ido)d~ <~1, IP,-/51<~1, and 

II " [I (Vn E N) dist V S-'(/5 v ~ic), d~t V S;~(P, v a~c) = 0, where S1 = S(k). 
X• i=0 X G i=O 

No Let R be the partition formed from atoms of V~._No T;~(P) as /~ is from 
N o v,o_,~. ~- ' (P) .  
If e~ and 8, are sufficiently small, and nl is sufficiently large, then I Q - R I < 

2e/10. 

Now let Q, 3 P~ v Q be a generator for (T~,X) and choose N1 so that 

V~=_N, T;~(P,). Choose e2 > 0 (of size to he specified later) and ((~2, n2) by 

Theorem 1 with respect to e2. As above, construct a partition 0 in .~ so that 

dist V S-~(/5 v (~ v ~c), dist V S~-'(PI v 01V alC) < ~2 
XxG i=0 XxG i=0 

and apply Theorem 1 to obtain TI, 6 .  and (~1 on .~ such t h a t T ~ T ,  

f t p ( 6 , ( s  < ~2, l(~1- (~1 < e2 and 
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(23) ( V n E N )  [distx• S ~ ' ( 0 ' v 6 ' 6 c ) ' d i s t  X)x• 

Let ~b be the homomorphism from (T~, X) to ( T ,  X) carrying 0~ onto Q~. Then 
the distribution condition (23) implies that ~,  is a homomorphism. 

Furthermore, e2 and (6z, nz) may have been chosen to insure that 
/5 Cz.., N, V,:-N,T/(-Q,),  giving (22), and 1 4 ~ ' ( O ) - R , l < 3 e t l O ,  where R, is 

formed from V ~="-N,, T~(P) as /~ is from V ~--"-N,, 7"-'(P), while I ~ b - ' ( O ) - / ~  I < 
2el10, so that ] ~b~'(O)- 4~-'(O)] < e/2, giving (21). �9 

THEOREM 2. Given ergodic K-extensions (S, T, 6-,32) and (S, T,o-,X) and 
e >0 ,  there exists ~"= ~ ' t ~ T o n  32, T '= T t k ~ T o n  X and ~ ' : 3 2 ~  G such 
that if tr' = or tk~ and ~' = ~ then (S', T', ~', 32) and (S', T', tr', X') are isomor- 

phic via an isomorphism �9 of the form ~(g, g ) =  (4~'(x), a '(x)g)- 

Note that �9 is then a factor orbit equivalence between (S, T,~, .Y) and 
(S, T, tr, X) of the form described in the introduction. 

PROOF. Fix {e,},=,, such that ET=o e, < e. By the corollary to Theorem 1, we 
obtain T,, = T~, ,~, ,  T on 32 and d~ : 32--> G such that (S, T, tr, X) is a factor of 
(So, T., 6"~, = 6 -(~-,,~, X) via a homomorphism (~, g)--* (qbo(g), &,(J~)g). 

Now fix an increasing sequence of partitions {B,}7=,, on 32 and {C,}7=. on X 
which generate s~ and M, respectively. 

By repeated applications of Lemma 7 we obtain a sequence of transforma- 
tions {T, = T(~,)}.=, on X and functions a,:X--~ G, a corresponding sequence 
{T, = Tr and d, on 32, homomorphisms 4', : (T,, 32)---~ (T. X) and generators 
Q, for T~ such that (Vi) 

(24) Q, D Q,_, v c,, 

(25) 

(26) 

(27) 

(28) 

(29) 

(~b/'(Q~))~, D B, fo ra l l l=<j=<i ,  
e i + . . . + e  ~ 

/ 6~- '(Q,-,)-  ~b~--~(Q,-,)/< e,, 

Jx J 

the map (g, g)---~ (4~ (e), a, (4~i (g))-~6, (g)g) is a homomorphism 
from (S, T, O (~, 32) to (S~, T~, tr (k,~, X), 

/z{x : TT(x)= TT~,(x) for all n E { - Ik , (x ) l , lk , (x ) [}}>  1 - e, 

(and similarly for ~ ) .  
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For suppose we have completed this construction through i - 1 .  Choose 

N~ E N so that /z{x : (3n  E Z), In ] < N ,  Tx = TL,(x)} > 1 - e,/2 (and similarly 

for T~_~). Apply Lemma 7 to choose e'~E (0, e~) so that T~ -.', T~_~ on X implies 

i ~ { x : T T x = T T - t x  for all n E { - N 2 , . . . , N 2 } } > ( 1 - e i / 2 )  (and similarly for 

-~;T~_, on X') and so that if T~ - . ; ~ _ ,  on )f  and R is a partition of X with 

[R - ~b~--t,(O,_~)[ < e~ then Bj C~ ....... (R)~, for each 1 < j  < i. 

Now apply Lemma 7 to obtain transformations T~ = TtE,>~,;T~_~ on X and 

= Tt~-,;T~_, on .,~, functions [3 :X-- .*G and 18 : X - - > G  with 

f• id6)dtt < e, and f ~ p ( ~ ( ~ ) , i d G ) d ~  < e,, a homomorphism 
~b, :(T~, X)---> (T~, X),  and a generator Q~ of T~ such that 

Q, D Qi - ,vC , ,  

(6;'(0,))~, ~ ,,B,, 
16 ; ' (o , - , ) -  6:'-,(o,-01 < e',, 

and Cf, g)  ~ (40~, a,-~(q~)- ' jS(ck~)- '~(~)6t~-i(e)g) is a homomorphism from 

(S~, T,,#t~,>,3f) to (S~, T, o'tk,~, X). Setting & =/36,_, and a, = 18a,_~ we have 

obtained the desired conditions. To finish the proof we set T ' ( x ) =  lim,_~ T~ (x) 

and a ' ( x ) =  l im,_.a;(x) .  Condition (29) insures that {T~(x)}7=~ is eventually 

constant, and that T' is orbit equivalent to T. Condition (27) insures that 

l im,_~a,(x) exists a.e. Define T' and a '  analogously. 

For A ~ .d ,  let [A] denote the element of the measure algebra .~(~t)  

determined by A. By conditions (24), (25) and (26), the map 

[~b']-' : [A ]---> lim,_| [4~ ~-'(A )] is a measure-preserving isomorphism from Ar (.d) 

to 3f (..~) implemented by a measure-preserving point isomorphism ~b' : .,~--* X 

carrying T to T. Condition (28) and the construction of ~ '  insure that if Q '  
generates T' and n ~ N, then 

V g'- '(4~'- '(O') v ti 'c), dist V S ' - ' (Q '  v a 'c  = O. 
/ = 0  X x G  i ~  0 

Thus (i, g) - (6 ' (x) ,  a '(th'(~))-'a ' ( i )g )  is an isomorphism. �9 
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